
MATH0502 - ANALYSE MATHÉMATIQUE 2
EXAMEN

Mai 2020

• Durée de l’́epreuve : 4 heures.

• Cet examen est̀a livre ouvert. Les calculatrices sont autorisées.

• Répondez aux différentes questions sur des feuilles sépaŕees.

• Indiquez lisiblement votre NOM en majuscules suivi de votrePrénom en minuscules dans
le coin suṕerieur gauche de chaque faceet nuḿerotez-la.

• Si vous ne ŕepondez pas̀a une question, rendez une feuille blanche pour cette question avec
votre NOM et votre Pŕenom.

• Vos copies doivent impérativementêtre transmises au format pdf, en quatre fichiers
distincts correspondant aux quatre questions de cet examenet dont les noms sont construits
sur le mod̀ele NOMPrenomQ1.pdf, NOMPrenomQ2.pdf, NOMPrenomQ3.pdf et
NOM PrenomQ4.pdf.

Question 1

i. Si la série
∞

∑
k=1

ak converge, en est-il de même de la série
∞

∑
k=1

(akbk) où

bk =

{

+1 sik est pair

−1 sik est impair
?

Justifiez.

ii. La suite des fonctionsfk(x) =
xk+1

1+x2k converge-t-elle uniformément sur[0,1]? Justifiez.

iii. Dans le cas où lim
k→∞

|ak|1/k = a∈ R0, montrez que la série obtenue à partir de
∞

∑
k=0

akx
k en remplaçant

chaque terme par sa primitive qui s’annule enx= 0 possède le même intervalle de convergence que
la série de départ.

iv. Si f ∈ L1(]−1,1[) etg∈C0(R), peut-on affirmer quef g∈ L1(]−1,1[)? Justifiez.

v. Si f ,g∈ L1(]−4,−2[), peut-on affirmer quef g∈ L1(]−4,−2[)? Justifiez.

Question 2

On considère la série
∞

∑
k=1

(−3)k

(k+1)
(x−1)k

i. Étudiez complètement la convergence de la série de fonctions.

ii. Sur quel domaineE cette série définit-elle une fonctionf ? Justifiez.

iii. Déterminez une expression approchée def (6/5) (pas nécessairement la valeur numérique) avec une
erreur maximale de 10−3.

iv. Calculez
d
dx

[

(x−1) f (x)
]

Sur cette base, déterminez une expression analytique de lafonction f valable sur l’intervalle de
convergence de la série de puissances. Justifiez.



Question 3

Étudiez l’existence de chacune des intégrales suivantes en discutant s’il y a lieu en fonction du
paramètreα ∈ R. Les valeurs des intégrales ne sont pas demandées.

i.
∫ +∞

2

(

lnx
x

)2

dx

ii.
∫ 1/2

0

1

xln3x
dx

iii.
∫ +∞

0

arctgx
1+xα dx

iv.
∫∫

]0,1[×]0,1[

y
x2+y2dxdy

Question 4

On considère la surfaceΣ obtenue par la rotation autour de l’axe OZ du graphique de la fonction

z=
(a2−x2)3/2

2pa
, x∈ [0,a]

limitée au premier octant(x,y,z≥ 0).

On considère également le champ vectoriel

F = β
xex+yey

3a2+x2+y2

où ex et ey sont les vecteurs unitaires portés par les axes OX et OY. Lesconstantesa, β et p sont réelles et
strictement positives.

x
y

z

C1

C3

C2

Σ

O

z=
(a

2 −x2 )
3/2

2pa

a

i. Déterminez la mesure du volume situé dans le premier octant, limité supérieurement par la surfaceΣ
et inférieurement par le planz= 0.

ii. Calculez
∮

C

F · ds où C = C1 ∪ C2 ∪ C3 désigne la frontière deΣ (voir dessin) en détaillant les

contributions des trois courbes régulières composantC .

iii. Justifiez le résultat de ii. par les théorèmes de l’analyse vectorielle.
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SOLUTION TYPE

Question 1

i. De la convergence de∑
k

ak, on ne peut déduire celle de∑
k

(akbk). Pour le montrer, Réponse par OUI ou
NON sans justification
= 0 ptnotons tout d’abord quebk = (−1)k et considérons la série numérique de terme

Contre-exemple
correct : 2 pts

général

ak =
(−1)k

k

Cette série est convergente en tant que série alternée dont le module du terme général Justification des
propriétés du contre-
exemple : 2 pts

décroı̂t monotonement vers zéro. Par contre, il n’en va pas de même de la série
considérée

∞

∑
k=1

(akbk) =
∞

∑
k=1

(−1)k

k
(−1)k =

∞

∑
k=1

[

(−1)k
]2

k
=

∞

∑
k=1

1
k

qui est, quant à elle, divergente (série harmonique). Total i. : 4 pts

ii. Puisque

lim
k→∞

xk =

{

0 six∈ [0,1[

1 six= 1

la suite des fonctionsfk converge sur[0,1] vers Limite de la suite :
2 pts

f (x) = lim
k→∞

fk(x) = lim
k→∞

xk+1

1+x2k =

{

0 six∈ [0,1[
1/2 si x= 1

La limite étant discontinue, la convergence ne peut être uniforme sur[0,1] puisque, les Convergence non
uniforme : 2 ptsfonctions fk étant continues sur[0,1], la limite devrait être continue si la convergence

était uniforme. Total ii. : 4 pts

iii. D’une part, en appliquant le critère de la racine à la série des modules∑
k

|akx
k|, on Connaissance

du concept d’interv. de
convergence : 1 ptétablit que l’intervalle de convergenceI de cette série est décrit par

lim
k→∞

|akx
k|1/k = |x| lim

k→∞
|ak|1/k = a|x|< 1

soit I=]−1/a,1/a[. I : 1 pt

D’autre part, la série obtenue en remplaçant chaque termepar sa primitive qui
s’annule enx= 0 est donnée par Série des primitives :

1 pt
∞

∑
k=0

ak
xk+1

k+1
puisque

∫
akx

kdx= ak
xk+1

k+1
+C

Il s’agit encore d’une série de puissances dont l’intervalle de convergenceI′ est décrit,
par application du même critère de la racine, par I

′ : 1 pt

lim
k→∞

∣

∣

∣

∣

ak
xk+1

k+1

∣

∣

∣

∣

1/k

= |x| lim
k→∞

(

|ak|
|x|

k+1

)1/k

= a|x| lim
k→∞

( |x|
k+1

)1/k

= a|x| < 1
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puisqu’il vient successivement

lim
k→∞

( |x|
k+1

)1/k

= lim
k→∞

exp

(

1
k

ln
|x|

k+1

)

(par définition)

= exp

(

lim
k→∞

ln |x|− ln(k+1)
k

)

(par continuité)

= exp

(

lim
k→∞

−1
k+1

)

(par le thm de l’Hospital)

= 1

Ainsi, I
′ =]−1/a,1/a[.

I= I
′ : 1 pt

L’intervalle de convergence de la série des primitives estdonc identique à celui de la Total iii. : 5 pts
série de départ.

iv. Commeg ∈ C0(R), la fonctiong est continue sur le compact[−1,1] et est dès lors
bornée sur[−1,1], i.e. g bornée sur[−1,1] :

1 pt
∃M ∈ R

+ : |g(x)| ≤ M ∀x∈ [2,3]

De là, on a directement Appel au critère de
Lebesgue : 2 pts

| f (x)g(x)| ≤ M| f (x)| ∀x∈]−1,1[.

Enfin, puisquef est intégrable sur]− 1,1[, il en va de même de| f | et le critère de | f | ∈L1(]−1,1[) : 1 pt
Lebesgue assure alors l’intégrabilité def g sur ]−1,1[. Total iv. : 4 pts

v. De f , g∈ L1(]−4,−2[), on ne peut déduire quef g∈ L1(]−4,−2[). Pour le montrer,
il suffit de considérer Contre-exemple

approprié : 2 pts
f (x) =

1√
x+4

et g= f

Les fonctionsf et g sont continues sur]− 4,−2] et intégrables sur]− 4,−2[, alors Justification du contre-
exemple : 1 ptque

f (x)g(x) =
1

x+4

n’est pas intégrable au voisinage de(−4)+. Total v. : 3 pts
TOTAL Q1 : 20PTS

Question 2

i. L’application du critère du quotient à la série des modules correspondant à la série
proposée

∞

∑
k=1

(−3)k

(k+1)
(x−1)k

conduit à considérer Application
correcte d’un critère à
la série des modules :
2 pts

lim
k→∞

|uk+1|
|uk|

= lim
k→∞

3k+1

3k

k+1
k+2

|x−1|k+1

|x−1|k = lim
k→∞

3
k+1
k+2

|x−1|= 3|x−1|−

On en déduit que

(a) la série converge absolument si 3|x−1|< 1, soit sur l’intervalle de convergenceConvergence surI :
4 pts (dont 1 pt pour la
conv. absolue)

I= ]2/3,4/3[
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(b) la série diverge (avec et sans module) si 3|x− 1| > 1, soit surx ∈ ]−∞,2/3[∪ Divergence surR\Ī :
1 pt]4/3,+∞[.

Le critère du quotient ne permet pas de conclure si 3|x− 1| = 1. Il convient donc
d’étudier séparément la convergence des deux séries numériques correspondant à
x= 2/3 etx= 4/3.

Enx= 2/3, la série prend la forme

∞

∑
k=1

(−3)k

(k+1)

(−1
3

)k

=
∞

∑
k=1

1
k+1

La série, à termes positifs, est divergente puisque Divergence en2/3 :
2 pts dont 1 pt pour la
justification1

k+1
∼ 1

k
, (k→ ∞)

i.e. son terme général est asymptotique au terme général de la série harmonique, qui
diverge.

Enx= 4/3, la série s’écrit

∞

∑
k=1

(−3)k

(k+1)

(

1
3

)k

=
∞

∑
k=1

(−1)k

k+1

Cette série est une série alternée qui ne converge pas absolument puisque le module

Semi-convergence en
4/3 : 3 pts (dont 1 pt
pour la justification et
1 pt pour la conv. non
absolue)

de son terme général est asymptotique au terme général de la série harmonique, qui
diverge (voir le casx= 2/3). Par contre, étant donné que le module du terme général
de cette série alternée tend monotonément vers 0, la série est semi-convergente.

En conclusion, la série de puissances converge sur]2/3,4/3]. La convergence est
absolue surI= ]2/3,4/3[.

En tant que série de puissances, la série converge uniformément sur tout intervalle

Conv. uniforme : 3 pts
(dont 1 pt pour la
justif. par la série de
puissances et 1 pt pour
l’extension au fermé)

fermé borné inclus dansI. De plus, la série de puissances convergeant en l’extrémité
4/3 de son intervalle de convergence, la convergence uniforme peut être étendue à tout
intervalle fermé borné[α,β]⊂ ]2/3,4/3].

Total i. : 15 pts
ii. La série de puissances définit une fonction en chacun des points où elle converge, Définir une fonction =

converger : 1 pt
Intervalle correct : 1 pt

c’est-à-dire sur l’intervalle]2/3,4/3] = E.

Total ii. : 2 pts
iii. En x= 6/5∈ I, on calcule

f (6/5) =
∞

∑
k=1

(−3)k

(k+1)

(

1
5

)k

=
∞

∑
k=1

(−1)k

(k+1)

(

3
5

)k

Il s’agit d’une série alternée convergente dont le moduledu terme général tend
monotonément vers 0. L’erreur commise en approchant cettesérie par une de ses Principe

de la majoration de
l’erreur : 3 pts
(dont 1 pt pour la
justification)

sommes partielles est donc majorée en valeur absolue par lavaleur absolue du premier
terme négligé, soit

f (6/5) =
n−1

∑
k=1

(−1)k

(k+1)

(

3
5

)k

+ ε avec |ε| ≤ 1
(n+1)

(

3
5

)n

Recherchons la plus petite valeur den pour laquelle Valeur de n ad hoc :
1 pt
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1
(n+1)

(

3
5

)n

≤ 10−3 ⇔ (n+1)

(

5
3

)n

≥ 103

On calcule successivement

n= 9, 10.

(

5
3

)9

≈ 992,29< 103

n= 10, 11.

(

5
3

)10

≈ 1819,199> 103

On peut donc approcherf (6/5) avec une erreur inférieure à 10−3 par Expression
approchée def (6/5) :
1 pt (valeur approchée
pas attendue)

9

∑
k=1

1
(k+1)

(−3
5

)k

À titre indicatif, on peut noter que ceci conduit à une valeur approximative de−0.217. Total iii. : 5 pts

iv. La série de puissances à dériver possédant le même intervalle de convergenceI que
la série étudiée ci-dessus et toute série de puissancesétant dérivable terme à termeJustification de

la dérivabilité terme à
terme : 1 pt

sur son intervalle de convergence, on calcule

d
dx

[

(x−1) f (x)
]

=
d
dx

[

(x−1)
∞

∑
k=1

(−3)k

(k+1)
(x−1)k

]

=
d
dx

[

∞

∑
k=1

(−3)k

(k+1)
(x−1)k+1

]

=
∞

∑
k=1

(−3)k (x−1)k

Le membre de droite fait apparaı̂tre une série géométrique de raison 3− 3x dont la
somme peut être exprimée sous la forme Expression de

la dérivée comme série
de puissances unique :
2 pts
Exploitation de la série
géométrique : 2 pts
(dont 1 pt pour|3−
3x|< 1)

d
dx

[

(x−1) f (x)
]

=
∞

∑
k=0

(3−3x)k−1

=
1

1− (3−3x)
−1

=
1

3x−2
−1

pourvu que la série géométrique converge, ce qui est le cas si|3−3x|< 1, i.e.si x∈ I.

En primitivant les deux membres de l’égalité, on obtient Primitivation : 1 pt

(x−1) f (x) =
∫ (

1
3x−2

−1

)

dx=
1
3

ln(3x−2)−x+C

La constante d’intégration peut être fixée en considérant cette égalité pourx = 1. Il
vient Constante

d’intégration : 1 pt0=
1
3

ln1−1+C soit C= 1

Dès lors, Expression def : 1 pt

f (x) =
ln(3x−2)
3(x−1)

−1 (♦)

Formellement, ce résultat est valable surI = ]2/3,4/3[ sauf enx = 1, en raison de la
division par(x−1). Cependant, en considérant la forme de la série initiale,on trouve Discussion des casx=

1 et x = 4/3 pas
attendue.6



aisément quef (1) = 0 et

f (1) = 0= lim
x→1

[

ln(3x−2)
3(x−1)

−1

]

En invoquant la continuité de la série en son extrémité où elle converge et du membreTotal iv. : 8 pts
de droite enx= 4/3, on peut également justifier que (♦) reste valable surE= ]2/3,4/3].

TOTAL Q2 : 30PTS

Question 3
Les réponses données
sans justification ne
donnent droit à aucun
point.

i. La fonction f (x) = x−2 ln2 x est continue sur[2,+∞[ de sorte que l’existence de

Continuité sur
[2,+∞[ : 1 pt

l’intégrale proposée dépend du comportement def au voisinage de+∞.

Puisque
lnx= o(x1/4), (x→+∞)

on a Intégrabilité en+∞ :
3 ptsln2x

x2 = o

(

1

x3/2

)

, (x→+∞)

Dès lors, la fonction est également intégrable au voisinage de+∞ de sorte que
f ∈ L1(]2,+∞[). Total i. : 4 pts

ii. La fonction f (x) = (xln3x)−1 est continue sur]0,1/2] de sorte que l’existence deC0(]0,1/2[) : 1 pt
l’intégrale proposée dépend de l’intégrabilité def au voisinage de 0.

Or, f est réelle et de signe constant au voisinage de 0+ et telle que Intégrabilité en 0 :
3 pts (dont 1 pt pour la
primitive)

∫
dx

xln3 x
=−1

2
(lnx)−2+C

Puisque la primitiveF(x) = (−1/2)(lnx)−2 admet une limite finie en 0, la fonctionf
est intégrable au voisinage de 0, de sorte quef ∈ L1(]0,1/2[). Total ii. : 4 pts

iii. La fonction Continuité sur
[0,+∞[ : 1 ptf (x) =

arctgx
1+xα

est continue sur[0,+∞[ quelle que soit la valeur deα ∈ R. Elle est donc intégrable
sur ]0,β[ quel que soitβ > 0.

Pour examiner l’intégrabilité au voisinage de+∞, on note que arctgx ∼ π/2 pour Comportement
asymptotique : 1 ptx→+∞ de sorte que

f (x) =
arctgx
1+xα ∼ π

2xα (x→+∞)

On en déduit quef ∈ L1(]0,+∞[) si α > 1 et n’est pas intégrable siα ≤ 1. Conclusion : 2 pts
Total iii. : 4 ptsiv. Par le critère de Tonelli, l’intégrale double

∫∫
]0,1[×]0,1[

y
x2+y2dxdy

existe si on peut trouver un ordre d’intégration partiellede la fonction en module
qui a un sens. Puisque l’intégrand est positif sur le domaine d’intégration, il suffit de
montrer l’existence des intégrales successives apparaissant dans Appel au

critère de Tonelli (ou
son application) : 2 pts

∫ 1

0
dx

∫ 1

0

y
x2+y2dy
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• Pour presque toutx∈]0,1[, la fonction Existence de
la première intégrale :
1 ptg(y) =

y
x2+y2

est continue sur[0,1] et donc intégrale sur]0,1[. On calcule aisément Valeur de la première
intégrale : 1 pt

G(x) =
∫ 1

0

y
x2+y2dy=

[

1
2

ln(x2+y2)

]1

0
=

1
2

[

ln(1+x2)− lnx2
]

= ln
√

1+x2− lnx

• La fonction G ∈ L1(]0,1[) car les deux termes du membre de droite qui la
composent sont intégrables sur cet intervalle. En effet, Existence de la

seconde intégrale : 1 pt(a) la fonction ln
√

1+x2 est continue sur le fermé borné[0,1] et est donc
intégrable sur]0,1[ ;

(b) la fonction lnx∈ C0(]0,1]) est telle que

lnx= o

(

1√
x

)

, (x→ 0+)

et est donc intégrable sur]0,1[.

Par le critère de Tonelli, on peut ainsi affirmer l’existence de l’intégrale double Conclusion : 1 pt
proposée.

Total iv. : 6 pts
De façon alternative, on peut démontrer l’existence de l’intégrale en considérant
l’autre ordre d’intégration partielle def ou encore en démontrant quef ∈ L1(E

′)
où

E
′ = {(x,y) ∈ R

2 : x> 0,y> 0,x2+y2 ≤ 2} ⊃ E= ]0,1[×]0,1[

La fonction f est positive surE′ et, par passage en coordonnées polaires, on a

∫∫
E′

f (x,y)dxdy=
∫ π/2

0
dθ

∫ √
2

0
r

r sinθ
r2 dr =

(∫ π/2

0
sinθ dθ

)

(∫ √
2

0
dr

)

où les deux intégrales du membre de droite existent puisque les intégrands sont
continus sur les compacts correspondants. Puisquef ∈L1(E

′), il vient aussif ∈L1(E)
puisqueE⊂ E

′. TOTAL Q3 : 18PTS

En examinant l’ordre d’int́egration alternatif,

∫ 1

0
dy

∫ 1

0

y
x2+y2dx

on obtient successivement

h(x) =
y

x2+y2 ∈C0([0,1]) pour presque tout y∈]0,1[

H(y) =
∫ 1

0

y
x2+y2dx=

∫ 1

0

1/y
1+(x/y)2 dx=

[

arctg
x
y

]1

0
= arctg

1
y















arctg
1
y
∈C0(]0,1])

arctg
1
y
∼ π

2
, (y→ 0+)

⇒ arctg
1
y
∈ L1(]0,1[)
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Question 4

i. Compte tenu de sa géométrie, le volume est aisément décrit en coordonnées Volume = intégrale
de 1 : 1 ptcylindriques. On a, en tenant compte du Jacobien de la transformation,

Réduction de
l’intégrale : 4 ptsV =

∫ π/2

0
dθ

∫ a

0
r dr

∫ z(r)

0
dz où z(r) =

(a2− r2)3/2

2pa

=
π
2

∫ a

0
r
(a2− r2)3/2

2pa
dr

=
π

4pa

[

−(a2− r2)5/2

5

]a

0

=
πa4

20p

Valeur du volume :
2 pts

De façon alternative, le volume peut être considéré comme un empilement de quartsALT : Caractérisation
géométrique : 2 ptsde disquesΣ(z) dont le rayon

R(z) =
√

a2− (2paz)2/3

varie avec la coordonnée verticalez∈ [0,a2/(2p)]. Selon cette approche, on a donc

V =

∫ a2/(2p)

0
dz

∫∫
Σ(z)

dxdy=
∫ a2/(2p)

0

(

1
4

πR2(z)

)

dz

=
π
4

∫ a2/(2p)

0

[

a2− (2paz)2/3
]

dz

=
π
4

[

a2z− 3
5
(2pa)2/3z5/3

]a2/(2p)

0

=
πa4

20p

puisque l’aire d’un quart de disque de rayonR(z) est donnée par

ALT : Expression
intégrale : 3 pts

ALT : Valeur du
volume : 2 pts

∫∫
Σ(z)

dxdy=
1
4

πR2(z)

Total i. : 7 pts

ii. L’arc C1 est décrit par Connaissance
théorique ou appliquée
du principe de
calcul d’une intégrale
curviligne : 2 pts

Param. deC1 : 2 pts

s(x) = xex+
(a2−x2)3/2

2pa
ez, x∈ [0,a]

On a donc,

s′(x) = ex−
3x
√

a2−x2

2ap
ez et F[s(x)] = β

xex

3a2+x2

Dès lors,

Expression
de l’intégrale en fct du
param. : 2 pts
Valeur de l’intégrale :
1 pt

∫
C1

F ·ds =
∫ a

0
F[s(x)] · s′(x)dx

= β
∫ a

0

x
3a2+x2dx

= β
[

1
2

ln(3a2+x2)

]a

0
=

1
2

β ln(4a2)− 1
2

β ln(3a2) =
1
2

β ln
4
3
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En adoptant des coordonnées cylindriques, l’arcC2 est décrit par

Param. deC2 : 2 pts
s(θ) = acosθ ex+asinθ ey = aer(θ), θ ∈ [0,π/2]

Dès lors, il vient
s′(θ) =−asinθ ex+acosθ ey = aeθ

et, par ailleurs, Expression
de l’intégrale en fct du
param. : 2 pts

F[s(θ)] = β
acosθ ex+asinθ ey

3a2+a2 =
β
4a

er

On observe donc que Valeur de l’intégrale :
1 pt∫

C2

F ·ds =
∫ π/2

0
F[s(θ)] · s′(θ)dθ = 0

L’intégrale curviligne surC3 se calcule de façon semblable à celle surC1 mais en
étant attentif à l’orientation de la courbe. L’intégrale curviligne surC3 est l’opposé de
celle sur Les

éléments non valorisés
dans le calcul deC1

mais valorisables ici
doivent l’être.

−C3 : s(y) = yey+
(a2−y2)3/2

2pa
ez, y∈ [0,a]

pour laquelle

s′(y) = ey−
3x
√

a2−y2

2ap
ez ainsi que F[s(y)] = β

yey

3a2+y2

Dès lors, on obtient
∫

C3

F ·ds =−
∫
−C3

F ·ds

=−
∫ a

0
F[s(y)] · s′(y)dy

=−β
∫ a

0

y
3a2+y2dx=−1

2
β ln

4
3

Valeur de l’intégrale
surC3 : 2 pts

En regroupant les résultat précédents, on trouve Conclusion : 1 pt
∮

C

F ·ds =
∫

C1

F ·ds+
∫

C2

F ·ds+
∫

C3

F ·ds

=
1
2

β ln
4
3
+0− 1

2
β ln

4
3
= 0 Total ii. : 15 pts

iii. Par application de la formule de Stokes, l’intégrale curviligne peut être exprimée sousArgument théorique
(Stokes ou potentiel) :
2 pts

la forme ∮
C

F ·ds =
∫∫

Σ
(∇∧F) ·n dσ

Or, en tout point deR3, on a Valeur du rotationnel :
1 pt

∇∧F =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ex ey ez

∂
∂x

∂
∂y

∂
∂z

βx
3a2+x2+y2

βy
3a2+x2+y2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

[

∂
∂x

(

βy
3a2+x2+y2

)

− ∂
∂y

(

βx
3a2+x2+y2

)]

ez

=
2βxy

(3a2+x2+y2)2 −
2βxy

(3a2+x2+y2)2 = 0
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Dès lors, il vient ∮
C

F ·ds =
∫∫

Σ
(∇∧F) ·n dσ = 0

De façon alternative, on peut remarquer queF est irrotationnel sur un ouvert
simplement connexe contenantΣ de sorte qu’il dérive d’un potentiel scalaireV. Par
le théorème fondamental des intégrales curvilignes, onen déduit que la circulation
sur une courbe fermée est égale à 0 puisque cette intégrale est la différence entre les
valeurs prises parV aux extrémités deC et que ces extrémités sont confondues.

Total iii. : 3 pts

TOTAL Q4 : 25PTS

11


