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Durée de l’́epreuve : 4 heures.
Les calculatrices sont interdites pour cet examen.

Question I

i. Énoncez le critère de Cauchy relatif à la convergence des suites numériques.

ii. Sur quel ensemble l’expression

f (x) =
π
2
− 4

π

∞

∑
k=0

cos
[

(2k+1)x
]

(2k+1)2

définit-elle une fonction continue? Justifiez.

iii. Si f est différentiable sur un ouvertΩ comprenant le compactK ⊂ R
2, peut-on en déduire que

f 2 ∈ L1(K)? Justifiez.

iv. (a) Énoncez la formule de Green et ses hypothèses.

(b) SoitC une courbe régulière, plane, simple, fermée, orientée‘aire à gauche’ et décrite par

C =
{(

x(t),y(t)
)

∈ R
2 : t ∈ [a,b]

}

où x(t) ety(t) sont continument dérivables sur[a,b] et telles quex(a) = x(b) ety(a) = y(b).

Montrez qu’il existe un champ vectorielF tel que

∮
C+

F ·ds =
∫ b

a
[x(t)y′(t)−x′(t)y(t)]dt

(c) Montrez que l’aireA du compactK délimité extérieurement parC est donnée par

A= α
∫ b

a
[x(t)y′(t)−x′(t)y(t)]dt

où α est une constante à déterminer.
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Question II

Les résultats classiques relatifs aux séries géométriques permettent d’établir que

1
1−q

=
∞

∑
k=0

qk , ∀q tel que|q|< 1

i. En exploitant ce résultat, montrez que

ln(1+x) =
∞

∑
k=1

(−1)k+1xk

k
, ∀x∈ E

oùE est un intervalle à préciser.

ii. Déduisez-en une expression en série de puissances de la fonction f (x) = (e+x) ln(e+x) sous la
forme

α+βx+
∞

∑
k=2

ak xk

où α, β etak ∈ R sont à déterminer. Sur quel intervalle cette expression est-elle valable?

Question III

Étudiez l’existence des intégrales suivantes :

i. ∫ 1
2

0

1√
x lnx

dx

ii. ∫ 1
2

0

1
x2 lnx

dx

iii. ∫ 2

1

√

(x−1)3

ln2x
dx

iv. ∫ +∞

2

1
xlnx

dx

Question IV

Soit un anévrisme abdominal présentant une symétrie de
révolution autour de l’aorte et dont la surface latérale est
décrite en coordonnées cylindriques par

r(z) =
(R+ r0)

2
+

(R− r0)

2
cos

(

πz
6r0

)

, z∈ [−6r0,+6r0]

i. Calculez le volume de l’anévrisme.

ii. Déterminez une expression intégrale de l’aire de la
surface latérale de cet anévrisme.

x
y

z

r0

R

12r0
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SOLUTION TYPE
Question I

i. Une suite numérique{xk} est convergente si et seulement si

(∀ε > 0)(∃N ∈ N) : (∀q≥ p≥ N) :
∣

∣xp−xq
∣

∣≤ ε

ii. D’une part, les fonctions

fk(x) =
cos

[

(2k+1)x
]

(2k+1)2

sont continues surR pour toutk∈ N.

D’autre part, la série de fonctions
∞

∑
k=0

cos
[

(2k+1)x
]

(2k+1)2

converge uniformément surR en vertu du critère de Weierstrass. En effet, le terme gén´eral de la
série des fonctions peut être majoré selon

∣

∣

∣

∣

∣

cos
[

(2k+1)x
]

(2k+1)2

∣

∣

∣

∣

∣

≤ 1
(2k+1)2 , ∀k∈ N, ∀x∈ R

où le membre de droite est le terme général d’une série numérique convergente puisque

1
(2k+1)2 ∼ 1

4k2 , (k→ ∞)

Le théorème relatif à la continuité des séries de fonctions permet alors de conclure quef est
continue surR.

iii. La fonction f est continue surK puisquef est différentiable surK. Le produit de deux fonctions
continues étant continu,f 2 est également continue surK. Finalement, toute fonction continue sur
un compact étant intégrable sur ce compact, on a

f 2 ∈ L1(K)

iv. (a) SiK⊂ R
2 est un compact régulier dont la frontièreC+ constituée d’un ou plusieurs contours

réguliers par morceaux est orientée ‘aire à gauche’ et siF = Fxex+Fyey ∈C1(K), alors

∫∫
K

(

∇∧F
)

· ez dxdy=
∫∫

K

(

∂Fy

∂x
− ∂Fx

∂y

)

dxdy=
∮

C+
F ·ds

(b) La courbe
C =

{(

x(t),y(t)
)

∈ R
2 : t ∈ [a,b]

}

admet la paramétrisation
s(t) = x(t)ex+y(t)ey, t ∈ [a,b]

avec s′(t) = x′(t)ex+y′(t)ey.

La circulation d’un champ vectorielF = Fxex+Fyey sur la courbe ferméeC+ orientée ‘aire
à gauche’ est définie par

∮
C+

F ·ds =
∫ b

a
F[x(t),y(t)] · s′(t)dt =

∫ b

a
Fx[x(t),y(t)]x

′(t)+Fy[x(t),y(t)]y
′(t)dt

Celle-ci s’identifie à l’expression donnée dans l’énoncé siF(x,y) = −yex+ xey puisqu’on a
alors ∮

C+
F ·ds =

∫ b

a
[x(t)y′(t)−x′(t)y(t)]dt
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(c) La formule de Green ∫∫
K

(

∂Fy

∂x
− ∂Fx

∂y

)

dxdy=
∮

C+
F ·ds

appliquée à la fonctionF =−y(t)ex+x(t)ey ∈C1(K) sur le compactK régulier entouré par la
courbe régulièreC+ orientée ‘aire à gauche’ donne

∫∫
K

2dxdy=
∫ b

a
[x(t)y′(t)−x′(t)y(t)]dt

soit

A=

∫∫
K

dxdy=
1
2

∫ b

a
[x(t)y′(t)−x′(t)y(t)]dt

Ce résultat est celui annoncé avecα = 1/2.

Question II

Soit la série géométrique
1

1−q
=

∞

∑
k=0

qk, ∀q tel que|q|< 1

i. Une expression en série de puissances de la fonction ln(1+ x) peut être obtenue à partir de la
série géométrique en observant que

ln(1+x) =
∫ x

0

dt
1+ t

où
1

1+ t
=

∞

∑
k=0

(−t)k =
∞

∑
k=0

(−1)ktk, ∀t tel que|t|< 1

Toute série de puissances étant primitivable terme à terme sur son intervalle de convergence, on
calcule successivement

ln(1+x) =
∫ x

0

∞

∑
k=0

(−1)ktk dt =
∞

∑
k=0

(−1)k
∫ x

0
tk dt =

∞

∑
k=0

(−1)k
[

tk+1

k+1

]x

0

=
∞

∑
k=0

(−1)k xk+1

k+1
=

∞

∑
k=1

(−1)k−1 xk

k

La série des primitives conservant le même intervalle de convergence que la série de départ, cette
relation est valable sur]−1,1[, i.e.

ln(1+x) =
∞

∑
k=1

(−1)k−1 xk

k
=

∞

∑
k=1

(−1)k+1 xk

k
, ∀x∈]−1,1[ (⋄)

Aux extrémitésx= −1 etx= 1 de l’intervalle de convergence, la série se réduit respectivement
aux séries numériques

−
∞

∑
k=1

1
k

et −
∞

∑
k=1

(−1)k

k

La première est un multiple de la série harmonique qui diverge. La seconde est semi-convergente
en tant que série alternée avec 1/k qui tend monotonément vers 0. La série obtenue définit donc
une fonction continue sur]−1,1] et l’égalité (⋄) s’étend enx= 1 par continuité. L’égalité (⋄) est
donc valable surE=]−1,1].

ii. Afin d’utiliser le résultat du point i., on écrit

f (x) = (e+x) ln(e+x) = (e+x) ln
[

e
(

1+
x
e

)]

= (e+x)
[

lne+ ln
(

1+
x
e

)]

= (e+x)
[

1+ ln
(

1+
x
e

)]

= (e+x)

[

1+
∞

∑
k=1

(−1)k+1 xk

kek

]
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où la série de puissances converge six/e∈]−1,1] donc sur]−e,e].
Afin d’obtenir une série de puissances unique, on écrit successivement

f (x) = (e+x)

[

1+
∞

∑
k=1

(−1)k+1 xk

kek

]

= e+x+e
∞

∑
k=1

(−1)k+1 xk

kek +x
∞

∑
k=1

(−1)k+1 xk

kek

= e+x+
∞

∑
k=1

(−1)k+1 xk

kek−1 +
∞

∑
k=1

(−1)k+1 xk+1

kek

= e+2x+
∞

∑
k=2

(−1)k+1 xk

kek−1 +
∞

∑
k=2

(−1)k xk

(k−1)ek−1

= e+2x+
∞

∑
k=2

(−1)k xk

ek−1

(−1
k

+
1

k−1

)

= e+2x+
∞

∑
k=2

(−1)k xk

k(k−1)ek−1 , ∀x∈]−e,e]

Question III

i. Soit ∫ 1
2

0

1√
x lnx

dx

On a
1√

x lnx
∈C0(]0,1/2])

Cette fonction est donc intégrable sur tout fermé borné inclus dans]0,1/2]. Il faut donc encore
étudier l’intégrabilité au voisinage de 0. On peut écrire

1√
x lnx

= o

(

1√
x

)

, (x→ 0+)

de sorte que l’intégrale existe puisque l’intégrande se comporte “mieux” qu’une fonction
intégrable.

ii. Soit ∫ 1
2

0

1
x2 lnx

dx

On a
1

x2 lnx
∈C0(]0,1/2])

Cette fonction est donc intégrable sur tout fermé borné inclus dans]0,1/2]. Il faut donc encore
étudier l’intégrabilité au voisinage de l’origine. On peut écrire

1
x
= o

(

1
x2 lnx

)

, (x→ 0+)

de sorte que l’intégrale n’existe pas puisque l’intégrande se comporte “moins bien” que la
fonction 1/x qui n’est pas intégrable.

iii. Soit ∫ 2

1

√

(x−1)3

ln2x
dx

• Nous constatons d’abord que
√

(x−1)3

ln2x
∈C0(]1,2])

Cette fonction est donc intégrable sur tout fermé borné inclus dans]1,2]. Il convient encore
d’envisager son comportement au voisinage de 1.
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• La formule de Taylor permet d’écrire

lnx∼ x−1, (x→ 1+)

de sorte que
√

(x−1)3

ln2x
∼ (x−1)3/2

(x−1)2 =
1√

x−1
, (x→ 1+)

Ceci assure l’intégrabilité au voisinage de 1 puisque l’intégrande s’y comporte comme une
fonction intégrable.

En conclusion, l’intégrale existe.

iv. Soit ∫ +∞

2

1
xlnx

dx

On a
1

xlnx
∈C0([2,+∞[)

Cette fonction est donc intégrable sur tout fermé borné inclus dans[2,+∞[. Il faut donc encore
étudier l’intégrabilité au voisinage de l’infini. On peut écrire

1
xlnx

= o

(

1
x

)

, (x→+∞)

ce qui ne permet pas de conclure puisque cela indique seulement que l’intégrande se comporte
“mieux” qu’une fonction qui n’est pas intégrable. Par contre, il est possible de déterminer une
primitive F(x) de 1/(xlnx) sur[2,+∞[,

F(x) = ln | lnx|

telle que
lim

x→+∞
ln | lnx|=+∞

La limite pourx→+∞ n’étant pas finie, on en déduit que l’intégrale n’existe pas en vertu de la
contraposée du théorème fondamental du calcul intégral.

Question IV

x
y

z

r0

R

12r0

ez

er

eθ

bP

θ

r(z)

z
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i. Le volume de l’anévrismeA s’exprime par

V =
∫∫∫

A
dxdydz

La symétrie de révolution de l’anévrisme autour de l’axevertical conduit naturellement à utiliser
des coordonnées cylindriques pour étudier ce problème.En coordonnées cylindriques, le domaine
est

{(r,θ,z) : 0< r ≤ r(z), 0≤ θ < 2π, −6r0 ≤ z≤ 6r0}
où

r(z) =
(R+ r0)

2
+

(R− r0)

2
cos

(

πz
6r0

)

En prenant en compte le JacobienJ= r associé au changement de variables entre les coordonnées
cartésiennes et cylindriques, on obtient

V =
∫ 2π

0
dθ

∫ 6r0

−6r0

dz
∫ r(z)

0
r dr

= 2π
∫ 6r0

−6r0

[

r2

2

]r(z)

0
dz= π

∫ 6r0

−6r0

r2(z) dz

= π
∫ 6r0

−6r0

[

(R+ r0)

2
+

(R− r0)

2
cos

πz
6r0

]2

dz

= π
∫ 6r0

−6r0

[

(R+ r0)
2

4
+

(R− r0)
2

4
cos2

πz
6r0

+
R2− r2

0

2
cos

πz
6r0

]

dz

= π
∫ 6r0

−6r0

[

(R+ r0)
2

4
+

(R− r0)
2

8

(

1+cos
2πz
6r0

)

+
R2− r2

0

2
cos

πz
6r0

]

dz

= π
[

(R+ r0)
2z

4
+

(R− r0)
2

8

(

z+
6r0

2π
sin

2πz
6r0

)

+
R2− r2

0

2
6r0

π
sin

πz
6r0

]6r0

−6r0

= 2π
[

3(R+ r0)
2r0

2
+

3(R− r0)
2r0

4

]

=
3π r0

2

[

2(R+ r0)
2+(R− r0)

2
]

On peut vérifier que si l’artère n’est pas gonflée, c’est-`a-dire si R = r0, le volume obtenu
correspond à celui d’un cylindre circulaire droit de rayonr0 et de hauteur 12r0, soitV = 12πr3

0.

ii. La symétrie de révolution suggère encore d’utiliserune paramétrisation de la surface latérale de
l’anévrisme basée sur les coordonnées cylindriques. Levecteur position d’un point de la surface
est donné par

s(θ,z) = r(z) er(θ)+zez, θ ∈ [0,2π[, z∈ [−6r0,+6r0]

où

r(z) =
(R+ r0)

2
+

(R− r0)

2
cos

πz
6r0

Il vient dès lors successivement

∂s
∂θ

= r(z) eθ,
∂s
∂z

=
∂r
∂z

er + ez

∂s
∂θ

∧ ∂s
∂z

=−r(z)
∂r
∂z

ez+ r(z)er

de sorte que la surface est régulière, et

∥

∥

∥

∥

∂s
∂θ

∧ ∂s
∂z

∥

∥

∥

∥

= r(z)

√

(

∂r
∂z

)2

+1

où
∂r
∂z

=−(R− r0)

2
π

6r0
sin

πz
6r0
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Finalement, l’aire latéraleΣA de l’anévrisme est donnée par

ΣA =
∫∫

ΣA

dσ =
∫ 2π

0
dθ

∫ 6r0

−6r0

r(z)

√

(

∂r
∂z

)2

+1 dz

= 2π
∫ 6r0

−6r0

r(z)

√

(

∂r
∂z

)2

+1 dz

Notons que cette intégrale existe puisque l’intégrande est continu sur le domaine compact
d’intégration.
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