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, EXAMEN
Prof. Eric J.M.DELHEZ

Durée de I'épreuve : 3 heures.
Les calculatrices sont interdites pour cet examen.

1. Simplifiez au maximum |’expression
[(aAb)/\a+(bAa)/\b -(a+b)
si a et b sont des vecteurs unitaires mutuellement orthogonaux de 1’espace physique E.

n
ii. Siw désigne une matrice colonne dont les n éléments réels wy, wy, ..., w, sont tels que Z wi2 =1,
i=1

démontrez que la matrice A = I, — 2ww" est orthogonale.
iii. Soit 4 une application linéaire d’un espace vectoriel E vers un espace vectoriel F.

(a) Définissez ker 4.

(b) Montrez que, si aj, ay, ..., a; sont linairement indépendants et orthogonaux a chacun des
vecteurs de ker 4, alors, 4(a;), 4(ay), ..., A(a) sont linéairement indépendants.

iv. On considere une matrice carrée A d’ordre n pouvant étre transformée en une matrice diagonale D
par une transformation de similitude au moyen d’une matrice de transformation S.

(a) Précisez la nature des éléments de D.
(b) Exprimez A, A% et A" en fonction de D et de S.

(c) Montrez que A annule son polyndme caractéristique, c’est-a-dire que si
p(A) =det(A—AL) = (—=1)"A"+a, (A" '+ +ajA+ag

alors

Déterminez toutes les solutions réelles du systéme linéaire

p(A) = (_l)nAn ‘i'anflAni1 + - +(11A—|—(10]1 =0

x+2y+az=1
x+2ay+z=a
y+az=0

en discutant s’il y a lieu en fonction du parametre a € R.

Tournez la page.



Question III

Le tenseur des déformations E est un tenseur symétrique d’ordre 2 servant a décrire la déformation
locale d’un matériau en raison des forces qui lui sont appliquées. Si on considére un élément de matiere
initialement de longueur ¢, et aligné avec la direction e (le vecteur e étant unitaire) avant 1’application
des forces, sa longueur ¢ dans la configuration déformée produite par 1’application des forces est donnée
par

@ZEQ(] +e-E-e)

Dans une base orthonormée particuliere (e, e, e3), on détermine les composantes E du tenseur des
déformations sous la forme

a 2 -1
E=¢l 2 -2 2
-1 2 o

ou €y > 0 est une constante connue et ol & est un parametre réel inaccessible a I’expérience.

1. Montrez qu’il n’existe pas de valeur de o telle que tous les éléments de matiere subissent une
élongation positive quelle que soit la direction e considérée. Justifiez.

ii. Dans le cas ou a0 = 1, déterminez, en fonction de e, e,, e3, une base orthonormée dans laquelle
le tenseur des déformations E est représenté par une matrice diagonale. Donnez 1’expression de
cette matrice diagonale.



SOLUTION TYPE

i. En exploitant la formule du double produit vectoriel, on a
{(a/\b) Na+ (b/\a)/\b} -(a+b)

:[ a-a)—a(b-a)+a(b-b)—b(a b)]-(a+b)
(b+a) (a+b)=(b-a)+ (a-a)+ (b-b)+(a-b)

puisque, a et b étant unitaires,
a-a=|a>=1 et b-b=|b|>=1

et, a et b étant orthogonaux,

a-b=b-a=0
ii. Pour étre orthogonale, la matrice A doit étre réelle, ce qui est évident ici, et telle que A~ = AT,
Il reste donc a montrer que
AAT =ATA =
Ona T
AT = (I, —2ww?) =1, —2ww!' =A
et
AAT = AA = ATA = (I, — 2ww?)(I, — 2ww?)
=1,L, —2ww'L, — L2ww" +4ww ww'
=T, —4ww’ +4w(wiw)w?
Or,
n
wlw = Z wi2 =1
i=1
donc

AAT=ATA =T, —4wwT +4wwT =1,
La matrice A est donc bien orthogonale.

iii. (a) L’ensemble ker A4 est le noyau de 1’application linéaire 4 défini par

ker4A={x€E: 4(x) =0}

(b) Pour étudier 1’indépendance linéaire des vecteurs 4(a;), 4(ay), ..., 4(a;), on considere la
relation
7\,1/‘4(31 ) + kzﬂ(ag) + ...+ kkﬂl(ak) =0

Vu la linéarité de 1’opérateur 4, elle équivaut a

/‘Zl(klal +Aar+... +7\,kak) =0



iv. (a)

(b)

(©)

c’est-a-dire
Map+Aar +... +Aa; €Eker 4

Par hypothese, on a cependant aussi
Mayr+Fhay +.. .+ Mag € (kerﬂl)L

de sorte que
Map+Aar+...+Ma €kerdn (kerﬂl)L = {0}
c’est-a-dire
Mar+FMar+.. Fa =0

Les vecteurs ay, ay, ..., a; étant linéairement indépendants, on en déduit que
M=A=...=14=0
ce qui assure 1’indépendance linéaire des vecteurs A4 (a;), A(az), ..., A(ay).

OnaS~'AS = D ot D est une matrice diagonale dont les éléments diagonaux sont les valeurs
propres de A, les valeurs propres de multiplicité supérieure a 1 étant répétées un nombre de
fois égal a leur multiplicité.

On a
A=SDS!

et
A?=SDS 'SDS™! =sD?s!

De méme, il vient également
A" = (SDS™ 1" = (SDS~!)(SDS™!)-..(SDS™!) =SD"s !
On peut donc écrire
p(A)=(=1)"SD"S ' +4,_;SD" 1S 4... 4+ 4,SDS™ ! + 4ol =S p(D) S~
Comme D = diag (Aq,...,A,), D* = diag (7\.’1‘,...,7\,',‘1) et

p(D) = (—1)"diag (A],...,A}) + a,_; diag (k’f’l,...,kﬁ’l)
+--+ +4ay diag(M,...,A,) +ao diag(1,...,1)

Ainsi, p(D) est aussi une matrice diagonale dont 1’élément ii est
(—1)”7\,? —{—an,ﬂ\.?il + .- +a17\.,~ +ayg= p()&,’)

Or, p(A;) = 0 puisque A; est un zéro du polyndme caractéristique. Il en résulte que tous les
éléments de p(D) sont nuls, donc que p(A) est une matrice nulle également, de sorte que A
annule son polyndme caractéristique.



Le systeme a résoudre s’écrit sous la forme matricielle

1 2 a X 1
1 2a 1 y|=1|a
0 1 a Z 0

Il peut étre résolu en échelonnant la matrice

1 2 all
1 2a 1|a
0 1 al0
On a
1 2 a 1
by — by — 1 0 2a—2 l1—ala—1 (*)
0 1 a 0

e Sia# 1, on continue 1’échelonnage en divisant la deuxieme ligne par 2a — 2,

1 2 a 1
0 1 —1/2]1/2
0 1 a 0
Ensuite,
1 0 a+1 0
fl —>£1—2€2
3= by — b 01 -1/2 1/2 (%)

00 a+(1/2)|—1/2

o Sia# —1/2, on continue I’échelonnage en divisant la toisieme ligne par a + (1/2),

1 0 a+1 0
0 1 —1/2 1/2
00 1 —1/(2a+1)
Ensuite,
a+1
1 00
2a+1
@1—)@1—(&4—1)@3 01 0 l 1 _2a+1—1_ a
by — Uy +03/2 2 4a+2  4a+2  2a+1

1
" 2a+1

Le systeme possede alors la solution unique

a+1
(%)

2a+1

N =
I
IS

o Sia=—1/2, la matrice (*x*) devient
10 1/2] 0
01 —1/2| 1/2
00 0 |-1/2

et le systéme est incompatible.



e Sia =1, la matrice (x) devient

S O =
— O N

1
0]0
1

On continue I’échelonnage en échangeant les deux dernieres lignes,

1 2 1]1
01 1]|0
0 0 O0]|0
Ensuite,
1 0 —1|1
51 — 51 — 2(2 0 1 1 0
00 010
La solution du systeme est alors donnée par
X 1 1
yv]l=(0]+A]|-1], ©)
Z 0 1

En conclusion,
e sia ¢ {1,—1/2}, lasolution est unique et donnée par (éb);
e sia =1, les solutions sont données par (V)

e sia=—1/2, le systtme est incompatible.

Question III

i. L’élongation d’un élément de matiere est positive quelle que soit sa direction e si

ii.

e-E-e>0 Ve # 0

soit, dans la base considérée,
elEe>0 Ve #0

i.e. si E est définie positive.

Par le critere de Sylvester, la matrice E étant symétrique, ceci est le cas si et seulement si

- 2 [0 2 o2 _
gy det (o) = gy >0, &, _2‘—80( 200—4) >0
et
a 2 -1
el2 -2 2|=-28(>+4a+3)>0
-1 2 o

Les deux premieres conditions étant incompatibles, on en déduit qu’il n’existe aucune valeur
de o telle que tous les éléments de maticre subissent une élongation positive quelle que soit la
direction e considérée.

Danslecasao=1,0n a

1 2 -1
E=¢| 2 -2 2
-1 2 1

Le tenseur des déformations E est représenté par une matrice diagonale dans une base
orthonormée formée des vecteurs propres de E.



Déterminons les valeurs propres de E. Au facteur g pres, elles sont égales aux valeurs propres
de (1/¢€9)E, soit aux zéros de
1—-A 2 —1
2 2-A 2 |=—(A-2%A+4)
-1 2 1—A

Les valeurs propres de E sont donc A; = 2¢( (de multiplicité 2) et A, = —4€( (de multiplicité 1).

Cherchons les vecteurs propres relatifs a A; = 2gy. Ce sont les solutions non nulles de (E —
ADw =0, soit

-1 2 -1 X 0
2 -4 2 vyl =10
-1 2 -1 Z 0

Par des opérations élémentaires, la matrice des coefficients peut étre transformée selon

1 -2 1 1 -2 1
(0 — —1) 2 —4 2 et (l& - _fzg_f?g 0 0 0
-1 2 -1 PR 00
Les vecteurs propres sont donc
2 —1
w=pB|1]+v]| 0 avec (B,7) # (0,0)
0 1
Cherchons les vecteurs propres relatifs a A, = —4g,. Ceux-ci sont les solutions non nulles de
(E—AI)w =0, soit
5 2 —1 X 0
2 2 2 y| =10
-1 2 5 Z 0

Pour résoudre ce systeme, on échelonne la matrice des coefficients en commengant par permuter
les lignes 1 et 3 (pour éviter les divisions) et en changeant le signe de la premiere ligne ainsi
obtenue ; on part donc de

1 -2 -5
2 2 2
5 2 -1
Il vient ensuite successivement
(@2—)52—2@1) I =2 =
(b3 — 3 —50;) 6 12
3T T 0 12 24
1 -2 -5
(f2—>f2/6) 0 1 2
0 12 24
1 0 —1
(@1 — {4 —l—2€2)
(0s — 5 — 1205) 012
3 3 2 00 0
Les vecteurs propres sont donc
1
w=29| -2 avec 0#0
1

Pour construire une base orthonormée formée de vecteurs propres de E, il faut prendre 3 vecteurs
orthonormés parmi ceux identifiés ci-dessus. Les vecteurs propres relatifs a des valeurs propres



différentes étant orthogonaux, puisque E est symétrique, il suffit d’identifier deux vecteurs
propres unitaires et orthogonaux parmi les vecteurs propres relatifs a la valeur propre double
2g et de compléter la base avec un vecteur propre unitaire relatif a la valeur propre —4¢€ .

Les vecteurs propres relatifs a A; = 2y et de composantes

2 -1
wi=11 et wy=1 0
0 1

peuvent &tre orthonormés en utilisant la méthode de Gram-Schmidt. On calcule successivement

2
Wi = ] 1
= —
V5 \o
puis, pour le second vecteur,
2 1 -
T ! /
wr— (W) wo)wj =wr+—=wj == 2
V5 5\ 5
et, en divisant par la norme,
1
, 1
W2 —

Dés lors, les vecteurs
(2e; +ey)

= (—e; +2e;+ 5e3)

v L
(P Ve

constituent une base orthonormée dans laquelle le tenseur est représenté par la matrice diagonale

2¢&g 0 0
0 2 O
0 0 —4g



