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Question I

i. Simplifiez au maximum l’expression

[

(a∧b)∧a+(b∧a)∧b

]

· (a+b)

si a et b sont des vecteurs unitaires mutuellement orthogonaux de l’espace physique E .

ii. Si w désigne une matrice colonne dont les n éléments réels w1, w2, . . ., wn sont tels que
n

∑
i=1

w2
i = 1,

démontrez que la matrice A= In −2wwT est orthogonale.

iii. Soit A une application linéaire d’un espace vectoriel E vers un espace vectoriel F.

(a) Définissez kerA .

(b) Montrez que, si a1, a2, . . ., ak sont linéairement indépendants et orthogonaux à chacun des

vecteurs de ker A , alors, A(a1), A(a2), . . ., A(ak) sont linéairement indépendants.

iv. On considère une matrice carrée A d’ordre n pouvant être transformée en une matrice diagonale D

par une transformation de similitude au moyen d’une matrice de transformation S.

(a) Précisez la nature des éléments de D.

(b) Exprimez A, A2 et An en fonction de D et de S.

(c) Montrez que A annule son polynôme caractéristique, c’est-à-dire que si

p(λ) = det(A−λI) = (−1)nλn +an−1λn−1 + · · ·+a1λ+a0

alors

p(A) = (−1)n
A

n +an−1A
n−1 + · · ·+a1A+a0I= 0

Question II

Déterminez toutes les solutions réelles du système linéaire











x+2y+az = 1

x+2ay+ z = a

y+az = 0

en discutant s’il y a lieu en fonction du paramètre a ∈ R.

Tournez la page.



Question III

Le tenseur des déformations E est un tenseur symétrique d’ordre 2 servant à décrire la déformation

locale d’un matériau en raison des forces qui lui sont appliquées. Si on considère un élément de matière

initialement de longueur ℓ0 et aligné avec la direction e (le vecteur e étant unitaire) avant l’application

des forces, sa longueur ℓ dans la configuration déformée produite par l’application des forces est donnée

par

ℓ= ℓ0(1+ e ·E · e)
Dans une base orthonormée particulière (e1, e2, e3), on détermine les composantes E du tenseur des

déformations sous la forme

E= ε0





α 2 −1

2 −2 2

−1 2 α





où ε0 > 0 est une constante connue et où α est un paramètre réel inaccessible à l’expérience.

i. Montrez qu’il n’existe pas de valeur de α telle que tous les éléments de matière subissent une

élongation positive quelle que soit la direction e considérée. Justifiez.

ii. Dans le cas où α = 1, déterminez, en fonction de e1, e2, e3, une base orthonormée dans laquelle

le tenseur des déformations E est représenté par une matrice diagonale. Donnez l’expression de

cette matrice diagonale.
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SOLUTION TYPE

Question I

i. En exploitant la formule du double produit vectoriel, on a

[

(a∧b)∧a+(b∧a)∧b

]

· (a+b)

=
[

b(a ·a)−a(b ·a)+a(b ·b)−b(a ·b)
]

· (a+b)

= (b+a) · (a+b) = (b ·a)+ (a ·a)+ (b ·b)+ (a ·b)
= 2

puisque, a et b étant unitaires,

a ·a = ‖a‖2 = 1 et b ·b = ‖b‖2 = 1

et, a et b étant orthogonaux,

a ·b = b ·a = 0

ii. Pour être orthogonale, la matrice A doit être réelle, ce qui est évident ici, et telle que A−1 = AT.

Il reste donc à montrer que

AA
T = A

T
A= In

On a

A
T = (In −2wwT)

T
= In −2wwT = A

et

AA
T = AA= A

T
A= (In −2wwT)(In −2wwT)

= InIn −2wwT
In − In2wwT +4wwTwwT

= In −4wwT +4w(wTw)wT

Or,

wTw =
n

∑
i=1

w2
i = 1

donc

AA
T = A

T
A= In −4wwT +4wwT = In

La matrice A est donc bien orthogonale.

iii. (a) L’ensemble kerA est le noyau de l’application linéaire A défini par

ker A = {x ∈ E : A(x) = 0}

(b) Pour étudier l’indépendance linéaire des vecteurs A(a1), A(a2), . . ., A(ak), on considère la

relation

λ1A(a1)+λ2A(a2)+ . . .+λkA(ak) = 0

Vu la linéarité de l’opérateur A , elle équivaut à

A(λ1a1 +λ2a2 + . . .+λkak) = 0
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c’est-à-dire

λ1a1 +λ2a2 + . . .+λkak ∈ kerA

Par hypothèse, on a cependant aussi

λ1a1 +λ2a2 + . . .+λkak ∈ (kerA)⊥

de sorte que

λ1a1 +λ2a2 + . . .+λkak ∈ kerA ∩ (kerA)⊥ = {0}
c’est-à-dire

λ1a1 +λ2a2 + . . .+λkak = 0

Les vecteurs a1, a2, . . ., ak étant linéairement indépendants, on en déduit que

λ1 = λ2 = . . .= λk = 0

ce qui assure l’indépendance linéaire des vecteurs A(a1), A(a2), . . ., A(ak).

iv. (a) On a S−1AS=D où D est une matrice diagonale dont les éléments diagonaux sont les valeurs

propres de A, les valeurs propres de multiplicité supérieure à 1 étant répétées un nombre de

fois égal à leur multiplicité.

(b) On a

A= SDS
−1

et

A
2 = SDS

−1
SDS

−1 = SD
2
S
−1

De même, il vient également

A
n = (SDS−1)n = (SDS−1)(SDS−1) · · · (SDS−1) = SD

n
S
−1

(c) On peut donc écrire

p(A) = (−1)n
SD

n
S
−1 +an−1SD

n−1
S
−1 + · · ·+a1SDS

−1+a0I= S p(D) S−1

Comme D= diag(λ1, . . . ,λn), D
k = diag

(

λk
1, . . . ,λ

k
n

)

et

p(D) = (−1)ndiag(λn
1, . . . ,λ

n
n)+an−1 diag

(

λn−1
1 , . . . ,λn−1

n

)

+ · · · +a1 diag (λ1, . . . ,λn)+a0 diag (1, . . . ,1)

Ainsi, p(D) est aussi une matrice diagonale dont l’élément ii est

(−1)nλn
i +an−1λn−1

i + · · ·+a1λi +a0 = p(λi)

Or, p(λi) = 0 puisque λi est un zéro du polynôme caractéristique. Il en résulte que tous les

éléments de p(D) sont nuls, donc que p(A) est une matrice nulle également, de sorte que A

annule son polynôme caractéristique.

4



Question II

Le système à résoudre s’écrit sous la forme matricielle





1 2 a

1 2a 1

0 1 a









x

y

z



=





1

a

0





Il peut être résolu en échelonnant la matrice





1 2 a 1

1 2a 1 a

0 1 a 0





On a

ℓ2 → ℓ2 − ℓ1





1 2 a 1

0 2a−2 1−a a−1

0 1 a 0



 (∗)

• Si a 6= 1, on continue l’échelonnage en divisant la deuxième ligne par 2a−2,





1 2 a 1

0 1 −1/2 1/2

0 1 a 0





Ensuite,

ℓ1 → ℓ1 −2ℓ2

ℓ3 → ℓ3 − ℓ2









1 0 a+1 0

0 1 −1/2 1/2

0 0 a+(1/2) −1/2









(∗∗)

⋄ Si a 6=−1/2, on continue l’échelonnage en divisant la toisième ligne par a+(1/2),









1 0 a+1 0

0 1 −1/2 1/2

0 0 1 −1/(2a+1)









Ensuite,

ℓ1 → ℓ1 − (a+1)ℓ3

ℓ2 → ℓ2 + ℓ3/2















1 0 0
a+1

2a+1

0 1 0
1

2
− 1

4a+2
=

2a+1−1

4a+2
=

a

2a+1

0 0 1 − 1

2a+1















Le système possède alors la solution unique





x

y

z



=
1

2a+1





a+1

a

−1



 (♣)

⋄ Si a =−1/2, la matrice (∗∗) devient









1 0 1/2 0

0 1 −1/2 1/2

0 0 0 −1/2









et le système est incompatible.
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• Si a = 1, la matrice (∗) devient




1 2 1 1

0 0 0 0

0 1 1 0





On continue l’échelonnage en échangeant les deux dernières lignes,





1 2 1 1

0 1 1 0

0 0 0 0





Ensuite,

ℓ1 → ℓ1 −2ℓ2





1 0 −1 1

0 1 1 0

0 0 0 0





La solution du système est alors donnée par





x

y

z



=





1

0

0



+λ





1

−1

1



 , λ ∈ R (♥)

En conclusion,

• si a 6∈ {1,−1/2}, la solution est unique et donnée par (♣) ;

• si a = 1, les solutions sont données par (♥) ;

• si a =−1/2, le système est incompatible.

Question III

i. L’élongation d’un élément de matière est positive quelle que soit sa direction e si

e ·E · e > 0 ∀e 6= 0

soit, dans la base considérée,

e
T
E e> 0 ∀e 6= 0

i.e. si E est définie positive.

Par le critère de Sylvester, la matrice E étant symétrique, ceci est le cas si et seulement si

ε0 det
(

α
)

= α ε0 > 0, ε2
0

∣

∣

∣

∣

α 2

2 −2

∣

∣

∣

∣

= ε2
0(−2α−4)> 0

et

ε3
0

∣

∣

∣

∣

∣

∣

α 2 −1

2 −2 2

−1 2 α

∣

∣

∣

∣

∣

∣

=−2ε3
0 (α

2 +4α+3)> 0

Les deux premières conditions étant incompatibles, on en déduit qu’il n’existe aucune valeur

de α telle que tous les éléments de matière subissent une élongation positive quelle que soit la

direction e considérée.

ii. Dans le cas α = 1, on a

E= ε0





1 2 −1

2 −2 2

−1 2 1





Le tenseur des déformations E est représenté par une matrice diagonale dans une base

orthonormée formée des vecteurs propres de E.
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Déterminons les valeurs propres de E. Au facteur ε0 près, elles sont égales aux valeurs propres

de (1/ε0)E, soit aux zéros de

∣

∣

∣

∣

∣

∣

1−λ 2 −1

2 −2−λ 2

−1 2 1−λ

∣

∣

∣

∣

∣

∣

=−(λ−2)2(λ+4)

Les valeurs propres de E sont donc λ1 = 2ε0 (de multiplicité 2) et λ2 =−4ε0 (de multiplicité 1).

Cherchons les vecteurs propres relatifs à λ1 = 2ε0. Ce sont les solutions non nulles de (E−
λ1I)w = 0, soit





−1 2 −1

2 −4 2

−1 2 −1









x

y

z



=





0

0

0





Par des opérations élémentaires, la matrice des coefficients peut être transformée selon

(ℓ1 →−ℓ1)





1 −2 1

2 −4 2

−1 2 −1



 et
(ℓ2 → ℓ2 −2ℓ1)
(ℓ3 → ℓ3 + ℓ1)





1 −2 1

0 0 0

0 0 0





Les vecteurs propres sont donc

w= β





2

1

0



+ γ





−1

0

1



 avec (β,γ) 6= (0,0)

Cherchons les vecteurs propres relatifs à λ2 = −4ε0. Ceux-ci sont les solutions non nulles de

(E−λ2I)w = 0, soit




5 2 −1

2 2 2

−1 2 5









x

y

z



=





0

0

0





Pour résoudre ce système, on échelonne la matrice des coefficients en commençant par permuter

les lignes 1 et 3 (pour éviter les divisions) et en changeant le signe de la première ligne ainsi

obtenue ; on part donc de




1 −2 −5

2 2 2

5 2 −1





Il vient ensuite successivement

(ℓ2 → ℓ2 −2ℓ1)
(ℓ3 → ℓ3 −5ℓ1)





1 −2 −5

0 6 12

0 12 24





(ℓ2 → ℓ2/6)





1 −2 −5

0 1 2

0 12 24





(ℓ1 → ℓ1 +2ℓ2)
(ℓ3 → ℓ3 −12ℓ2)





1 0 −1

0 1 2

0 0 0





Les vecteurs propres sont donc

w= δ





1

−2

1



 avec δ 6= 0

Pour construire une base orthonormée formée de vecteurs propres de E, il faut prendre 3 vecteurs

orthonormés parmi ceux identifiés ci-dessus. Les vecteurs propres relatifs à des valeurs propres
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différentes étant orthogonaux, puisque E est symétrique, il suffit d’identifier deux vecteurs

propres unitaires et orthogonaux parmi les vecteurs propres relatifs à la valeur propre double

2ε0 et de compléter la base avec un vecteur propre unitaire relatif à la valeur propre −4ε0 .

Les vecteurs propres relatifs à λ1 = 2ε0 et de composantes

w1 =





2

1

0



 et w2 =





−1

0

1





peuvent être orthonormés en utilisant la méthode de Gram-Schmidt. On calcule successivement

w
′
1 =

1√
5





2

1

0





puis, pour le second vecteur,

w2 − (w′
1

T
w2) w

′
1 = w2 +

2√
5
w
′
1 =

1

5





−1

2

5





et, en divisant par la norme,

w
′
2 =

1√
30





−1

2

5





Pour le troisième vecteur de base, on obtient directement

w
′
3 =

1√
6





1

−2

1





Dès lors, les vecteurs






























w
′
1 =

1√
5
(2e1 + e2)

w
′
2 =

1√
30

(−e1 +2e2 +5e3)

w
′
3 =

1√
6
(e1 −2e2 + e3)

constituent une base orthonormée dans laquelle le tenseur est représenté par la matrice diagonale





2ε0 0 0

0 2ε0 0

0 0 −4ε0




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