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Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours

d’Analyse. Il est purement facultatif.

Pour que l’exercice vous soit réellement profitable, il vous est conseillé de vous placer autant que

possible dans les conditions d’une interrogation normale : répondez aux questions seul(e), sans

interrompre votre travail, dans un délai indicatif de trois heures.

Question I

i. Peut-on affirmer que toute fonction réelle f définie sur R et continue sur ]0,1[ est bornée sur ]0,1[?
Justifiez.

ii. A- Laquelle des expressions ci-dessous traduit f (x) = o
(

g(x)
)

, (x →+∞)?

a. (∀ε > 0)(∃N > 0)(∀x ≥ N) : | f (x)−g(x)| ≤ ε

b. (∀ε > 0)(∃N > 0)(∀x ≥ N) : | f (x)| ≤ ε|g(x)|

c. (∀N > 0)(∃ε > 0)(∀x ≥ N) : | f (x)−g(x)| ≤ ε

d. (∃ε > 0)(∀N > 0)(∀x ≥ N) : | f (x)| ≤ ε|g(x)|
B- Sur base de la définition appropriée, montrez que si

f1(x) = o
(

g(x)
)

, (x →+∞) et f2(x) = o
(

g(x)
)

, (x →+∞)

alors

f1(x)+ f2(x) = o
(

g(x)
)

, (x →+∞)

Question II

On définit la fonction d’erreur de Gauss par

erf(x) =
2√
π

∫ x

0
e−t2

dt

Cette fonction intervient en probabilité aussi bien que dans l’étude du processus de diffusion.

i. Déterminez l’expression de la dérivée de la fonction erf.

ii. Justifiez théoriquement l’application de la formule de Taylor à l’ordre 3 à la fonction erf au voisinage

de a = 0.

iii. Déterminez l’expression du polynôme de Taylor P3(x) de degré 3 et du reste R3(x) correspondant.

iv. Déterminez une constante C majorant l’erreur absolue |R3(x)| sur [0,0.1].



Question III

On considère la fonction V définie par

V (x) =

(

f (x)− 1

f (x)

)2

où la fonction f ∈C∞(R) est strictement positive et dont la dérivée seconde f ′′ ne s’annule jamais.

i. Montrez que la fonction V est stationnaire en tout x ∈ (E1 ∪ E2) où E1 = {x1 ∈ R : f (x1) = 1} et

E2 = {x2 ∈ R : f ′(x2) = 0}.

ii. Déterminez la nature des points stationnaires de V si E1 ∩E2 = /0.

iii. Montrez que V présente un minimum local en tout point x ∈ (E1 ∩E2).
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SOLUTION TYPE

Question I

i. Non, on ne peut pas affirmer cela. Considérons par exemple la fonction Pas de valorisation

d’une réponse correcte

donnée sans

justification
f (x) =

{

1/x si x 6= 0

1 si x = 0

Cette fonction est réelle, définie sur R et continue sur ]0,1[. Cependant, Contre-exemple

correct : 2 pts

Justification : 2 ptslim
x→0+

f (x) = +∞

de sorte que la fonction f n’est pas bornée dans V (0). Total i. : 4 pts

ii. A- L’expression b. traduit correctement la proposition donnée.

Une fonction f est dite négligeable par rapport à une fonction g au voisinage de

x0 si et seulement si f peut être rendue plus petite que n’importe quel multiplie

de g à condition de considérer un voisinage approprié de x0, c’est-à-dire ssi

(∀ε > 0)(∃V (x0))(∀x ∈Vε(x0)) : | f (x)| ≤ ε|g(x)|

Un voisinage de +∞ dans R étant un sous-ensemble du type [N,+∞[, il vient Total A. : 1 pt (aucune

justification attendue)

f (x) = o
(

g(x)
)

, (x→+∞) ⇔ (∀ε> 0)(∃N > 0)(∀x≥N) : | f (x)| ≤ ε|g(x)|

B- On peut traduire

f1(x) = o
(

g(x)
)

, (x →+∞) et f2(x) = o
(

g(x)
)

, (x →+∞)

par Traduction des

hypothèses : 1 pt(∀ε > 0)(∃N1 > 0)(∀x ≥ N1) : | f1(x)| ≤
ε

2
|g(x)|

et Gestion des ε> 0 : 1 pt

(∀ε > 0)(∃N2 > 0)(∀x ≥ N2) : | f2(x)| ≤
ε

2
|g(x)|

Démonstration : 3 pts,

dont 1 pt pour N =
sup{N1,N2} ou N =
max{N1,N2} et 1 pt

pour | f1(x) + f2(x)| ≤
| f1(x)|+ | f2(x)|

En utilisant ces deux propositions, il vient

(∀ε> 0)(∃N = sup{N1,N2})(∀x≥N) : | f1(x)+ f2(x)| ≤ | f1(x)|+ | f2(x)| ≤ ε|g(x)|

ce qui traduit le fait que

f1(x)+ f2(x) = o
(

g(x)
)

, (x →+∞)

Total B. : 5 pts

Total ii. : 6 pts

TOTAL QI : 10 PTS
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Question II

i. La fonction

erf(x) =
2√
π

∫ x

0
e−t2

dt

est la primitive qui s’annule en x = 0 de la fonction continue (2/
√

π)e−x2

. Pour tout Total i. : 2 pts

x ∈ R, on a donc
d

dx
erf(x) =

2√
π

e−x2

ii. La fonction erf est une primitive de la fonction f réelle : 1 pt

Justification se

basant sur la notion de

primitive : 1 pt

f ∈C∞(R) : 1 pt

2√
π

e−x2 ∈C∞(R)

Elle est donc réelle et indéfiniment continûment dérivable sur R. Dès lors, la

fonction d’erreur de Gauss vérifie les hypothèses du théorème de Taylor à un ordre

quelconque, et donc en particulier pour n = 3, sur tout intervalle [0,x] (ou [x,0] si

x < 0). Total ii : 3 pts

iii. La formule de Taylor à l’ordre 3 au voisinage de a = 0 s’écrit Connaissance de

la formule de Taylor

(mise en pratique ou

écrite de façon

générale) : 3 pts

f (x) = P3(x)+R3(x)

où

P3(x) = f (0)+ x f ′(0)+
1

2
x2 f ′′(0)+

1

3!
x3 f (3)(0)

et

R3(x) =
1

4!
x4 f (4)(ξ), ξ ∈]0,x[ ou ]x,0[

On calcule successivement Valeur des dérivées :

2 pts
f (x) =

2√
π

∫ x

0
e−t2

dt f (0) = 0

f ′(x) =
2√
π

e−x2

f ′(0) =
2√
π

f ′′(x) =− 4√
π

xe−x2

f ′′(0) = 0

f (3)(x) =
4√
π
(2x2 −1)e−x2

f (3)(0) =− 4√
π

f (4)(x) =
8√
π

x(3−2x2)e−x2

Remarquons que la fonction erf est impaire et que ses dérivées d’ordre pair sont donc

nulles à l’origine. Le polynôme de Taylor au voisinage de l’origine ne comprend dès

lors que des puissances impaires de x. À l’ordre 3, on a

erf(x) = P3(x)+R3(x)

où Polynôme P3 : 3 pts

P3(x) =
2√
π

[

x− x3

3

]

et Expression de R3 :

3 pts, dont 1.5 pt pour

la localisation de ξ
R3(x) =

1

3
√

π
ξ(3−2ξ2)e−ξ2

x4, ξ ∈]0,x[ ou ]x,0[

Total iii : 11 pts
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iv. Utilisant l’expression R3(x) du reste pour x ∈ [0,0.1], il vient

|R3(x)|=
∣

∣

∣

∣

1

3
√

π
ξ(3−2ξ2)e−ξ2

x4

∣

∣

∣

∣

<
1

105
√

π

puisque 0 < |ξ|< x ≤ 0.1, |e−ξ2 |< 1 et |3−2ξ2|< 3. Total iv : 2 pt

TOTAL QII : 18 PTS

Question III

i. Soit

V (x) =

(

f (x)− 1

f (x)

)2

Remarquons tout d’abord que V ∈C∞(R) puisque f ∈C∞(R) et f 6= 0 de sorte que

1/ f ∈ C∞(R). Les points stationnaires et leur nature peuvent donc être déterminés V ∈C∞(R) : 1 pt

en étudiant les dérivées successives de V .

Les points stationnaires de V sont les solutions de Points

stationnaires solutions

de V ′(x) = 0 : 1 pt
V ′(x) = 0

soit

V ′ = 2 f ′
(

f − 1

f

)(

1+
1

f 2

)

= 0

Comme annoncé, les points stationnaires ont deux origines possibles : les Expression de V ′ : 1 pt

Identification des deux

types de points

stationnaires : 1 pt

éventuelles solutions x1 ∈ E1 de l’équation

f (x1) = 1

et les éventuels points stationnaires de f , i.e. les solutions x2 ∈ E2 de Total i. : 4 pts

f ′(x2) = 0

ii. La nature des points stationnaires se déduit de la valeur des dérivées successives de

V , à commencer par Expression de V ′′ : 1 pt

V ′′ = 2 f ′2
(

1+
1

f 2

)2

+2

(

f − 1

f

)

(

f ′′+
f ′′

f 2
−2

f ′2

f 3

)

Nature de x = x1 :

2 pts.A- Considérons les points stationnaires x1 ∈ E1 en lesquels f (x1) = 1.

Si on peut supposer que f ′(x1) 6= 0, il vient

V ′′(x1) = 8 f ′2(x1)> 0

et V présente un minimum local en x1.

B- Considérons les points stationnaires x2 ∈ E2 en lesquels f ′(x2) = 0.

On calcule Nature de x = x2 :

3 pts.
V ′′(x2) = 2 f ′′(x2)

(

f (x2)−
1

f (x2)

)(

1+
1

f 2(x2)

)

Sous l’hypothèse f (x2) 6= 1, le signe de cette expression est celui de

f ′′(x2)

(

f (x2)−
1

f (x2)

)

Il y a donc 2 cas à envisager.
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• Si V ′′(x2)> 0, V est minimum. Ce cas se produit si f ′′(x2)> 0 et f (x2)> 1

ou si f ′′(x2)< 0 et f (x2)< 1.

• Si V ′′(x2)< 0 , V est maximum. Ce cas se produit si f ′′(x2)> 0 et f (x2)< 1

ou si f ′′(x2)< 0 et f (x2)> 1. Total ii. : 6 pts

iii. Pour tout x⋆ ∈ E1 ∩ E2, on a simultanément f (x⋆) = 1 et f ′(x⋆) = 0. Les

développements menés plus haut conduisent alors à V ′′(x⋆) = 0, ce qui ne permet

pas de préciser la nature du point stationnaire. Il convient alors d’étudier les dérivées

d’ordre supérieur. On a

V (3) = 6 f ′
(

1+
1

f 2

)(

f ′′+
f ′′

f 2
−2

f ′2

f 3

)

+2

(

f − 1

f

)

(

6 f ′3

f 4
− 6 f ′ f ′′

f 3
+ f (3)+

f (3)

f 2

)

de sorte que

V (3)(x⋆) = 0

Nature justifiée de x⋆ :

2 ptsEn ne développant pas les termes manifestement nuls puisque f (x⋆) = 1 et

f ′(x⋆) = 0, on obtient ensuite directement Total iii. : 2 pts

V (4)(x⋆) = 24
(

f ′′(x⋆)
)2

> 0

Ceci prouve que les points stationnaires x⋆ ∈ (E1 ∩E2) sont bien des minima locaux

de V .
Les 4 points relatifs à

la nature des positions

x1 sont accordés si

ce raisonnement est

donné.

Remarquons qu’il est aussi possible de raisonner plus simplement pour déterminer

la nature de tous les points stationnaires x1 tels que f (x1) = 1. En effet, d’une part,

V (x)≥ 0 quel que soit x et, d’autre part, V (x1) = 0. Dès lors, V (x)≥V (x1) quel que

soit x ∈ R, de sorte que les points x1 ∈ E1 sont des minima (globaux) de V .

TOTAL QIII : 12 PTS

COMMENTAIRES ET ERREURS LES PLUS FRÉQUENTES

Question I

i. • Pour démontrer qu’un énoncé est faux, il ne suffit pas d’expliquer comment une

fonction pourrait ne pas respecter l’énoncé. Il faut donner un contre-exemple

pour prouver qu’une telle fonction invalidant l’énoncé existe bel et bien.

Le contre-exemple doit vérifier les hypothèses, c’est-à-dire ici être une fonction

réelle, définie sur R et continue sur ]0,1[. Il doit aussi nier la thèse, c’est-à-dire

ici ne pas être borné sur ]0,1[.
Un exemple qui ne vérifie pas toutes les hypothèses de l’énoncé ne peut servir

de base au raisonnement. La fonction 1/x n’est pas bornée sur ]0,1[ mais elle ne

vérifie pas toutes les hypothèses puisqu’elle n’est pas définie en x = 0. Elle ne

constitue donc pas un contre-exemple permettant de démontrer que l’énoncé est

faux.
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• On sait qu’une fonction continue sur un compact est bornée sur ce compact.

Ce théorème n’était cependant d’aucune utilité ici puisqu’on considérait une

fonction continue sur un intervalle ouvert et pas sur un compact.

ii. • Il était explicitement demandé de démontrer la proposition en se basant sur

la définition approprié identifiée au point A. Une démonstration du caractère

négligeable basée sur la définition par la limite ne répondait donc pas à la

question posée. On se souviendra ici que la définition sur base de la limite

n’est pas générale ; elle demande de vérifier l’hypothèse supplémentaire que la

fonction g(x) n’est pas identiquement nulle dans un voisinage de +∞ dans le cas

qui nous occupe.

• La traduction des hypothèses relatives aux fonctions f1 et f2 demandait

d’introduire deux entiers N1 et N2 différents. La définition du caractère

négligeable pouvait alors être appliquée à la somme des deux fonctions en

considérant x ≥ max(N1,N2).
• Alors qu’un contre-exemple permet de justifier qu’un énoncé est faux, un

exemple ne permet jamais de justifier qu’un énoncé est vrai. Pour justifier un

énoncé, il faut une démonstration générale.

• On se rappellera que la valeur absolue d’une somme est inférieure ou égale à la

somme des valeurs absolues. On ne peut donc pas écrire en général

| f1(x)+ f2(x)|= | f1(x)|+ | f2(x)|

Question II

i. La fonction erf(x) est une primitive de la fonction continue (2/
√

π)e−x2

. Sa dérivée

est donc simplement la fonction (2/
√

π)e−x2

.

ii. Citer les hypothèses générales de la formule de Taylor à l’ordre 3 ne suffit pas pour

justifier l’écriture de celle-ci. Il faut aussi justifier que la fonction à laquelle on

applique la formule vérifie ces hypothèses. Ici, la définition de la fonction erf comme

primitive d’une fonction indéfiniment continument dérivable sur R garantissait que

les hypothèses étaient vérifiées.

iii. • La formule de Taylor à l’ordre 3 s’écrit

erf(x) = P3(x)+R3(x)

L’égalité n’est vraie qu’en présence du reste. On ne peut pas écrire que

erf(x) = P3(x).
• Le reste s’écrit

R3(x) =
1

4!
x4 f (4)(ξ), ξ ∈]0,x[ ou ]x,0[

où il est indispensable de préciser l’intervalle auquel le point ξ appartient.

• Le reste s’exprime ici comme un produit de plusieurs facteurs

R3(x) =
1

3
√

π
ξ(3−2ξ2)e−ξ2

x4, ξ ∈]0,x[ ou ]x,0[

Afin de majorer ce reste pour x ∈ [0,0.1], il faut donner à chacun de ces facteurs

sa borne supérieure. En particulier, les facteurs (3− 2ξ2) et e−ξ2

sont bornés

supérieurement par leur valeur pour ξ = 0 alors que les bornes supérieures des

facteurs ξ et x4 sont obtenes en remplaçant ξ et x par 0.1.

• Il ne faut pas remplacer des expressions exactes par leur valeur approchée. En

particulier, on laissera toujours π, e,
√

2, 1/3 ... dans les expressions finales sans

en donner une valeur numérique approchée.
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Question III

i. Rappelons que les points stationnaires d’une fonction sont ceux où la dérivée de

cette fonction s’annule.

ii. • Donner la nature d’un point stationnaire consiste à déterminer s’il s’agit d’un

minimum, d’un maximum ou d’un point d’inflexion à tangente horizontale.

• La nature des points stationnaires de V ne peut être déterminée ici aisément

sur base de l’étude de la croissance/décroissance de la fonction au voisinage

de ces points stationnaires. Par contre, on peut déterminer la nature d’un point

stationnaire x⋆ en se basant sur l’ordre et le signe de la première dérivée non

nulle en ce point. Rappelons que

⋄ la fonction présente un minimum local en x⋆ si la première dérivée non nulle

en ce point est positive et d’ordre pair ;

⋄ la fonction présente un maximum local en x⋆ si la première dérivée non nulle

en ce point est négative et d’ordre pair ;

⋄ la fonction présente un point d’inflexion à tangente horizontale si la première

dérivée non nulle en ce point est d’ordre impair.

L’application de ce critère demande que la fonction V soit suffisamment

régulière. Même si cela n’était pas explicitement demandé, il convenait donc

de vérifier que la fonction V était suffisamment continûment dérivable pour

déterminer la nature des points stationnaires sur base des valeurs de ses

dérivées. Étant donné les hypothèses sur f , on pouvait aisément en conclure

que V ∈C∞(R).
La première dérivée non nulle pour les points x1 est la dérivée seconde et elle est

positive de sorte que ces points sont des minimas de la fonction V . La première

dérivée non nulle pour les points x2 est également la dérivée seconde mais son

signe dépend des caractéristiques de la fonction f . Suivant le cas, elle peut être

positive et correspondre à des minimas de V ou négative et corrrespondre à des

maximas de V .

iii. Les points stationnaires de V tels que f (x⋆) = 1 et f ′(x⋆) = 0 annulent la dérivée

seconde de V . Il est donc nécessaire de continuer à dériver la fonction V jusqu’à

obtenir une dérivée qui ne s’annule pas en ces points (la dérivée quatrième ici) pour

déterminer leur nature.

Le calcul des dérivées successives ne présente pas de complication particulière mais

il faut pouvoir organiser ses calculs de façon efficace, écrire soigneusement et ne

pas laisser tomber trop rapidement les bras face à des développements de quelques

lignes.
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